In this paper, we study the existence of ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent. Under certain assumptions on the potential V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev-Nehari manifold, the arguments of Brézis-Nirenberg, the monotonicity trick and a global compactness lemma.

Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent

PUCCI, PATRIZIA
;
2020

Abstract

In this paper, we study the existence of ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent. Under certain assumptions on the potential V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev-Nehari manifold, the arguments of Brézis-Nirenberg, the monotonicity trick and a global compactness lemma.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1469899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact