In this paper, we study the existence of ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent. Under certain assumptions on the potential V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev-Nehari manifold, the arguments of Brézis-Nirenberg, the monotonicity trick and a global compactness lemma.
Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent
PUCCI, PATRIZIA
;
2020
Abstract
In this paper, we study the existence of ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent. Under certain assumptions on the potential V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev-Nehari manifold, the arguments of Brézis-Nirenberg, the monotonicity trick and a global compactness lemma.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.