The investigation of chemi-ionization processes provides unique information on how the reaction dynamics depend on the energy and structure of the transition state which relate to the symmetry, relative orientation of reagent/product valence electron orbitals, and selectivity of electronic rearrangements. Here we propose a theoretical approach to formulate the optical potential for Ne*(3P2,0) noble gas atom chemi-ionizations as prototype oxidation processes. We include the selective role of atomic alignment and of the electron transfer mechanism. The state-to-state reaction probability is evaluated and a unifying description of the main experimental findings is obtained. Further, we reproduce the results of recent and advanced molecular beam experiments with a state selected Ne* beam. The selective role of electronic rearrangements within the transition state, quantified through the use of suitable operative relations, could cast light on many other chemical processes more difficult to characterize.

General treatment for stereo-dynamics of state-to-state chemi-ionization reactions

Falcinelli S.
;
Vecchiocattivi F.;Pirani F.
2020

Abstract

The investigation of chemi-ionization processes provides unique information on how the reaction dynamics depend on the energy and structure of the transition state which relate to the symmetry, relative orientation of reagent/product valence electron orbitals, and selectivity of electronic rearrangements. Here we propose a theoretical approach to formulate the optical potential for Ne*(3P2,0) noble gas atom chemi-ionizations as prototype oxidation processes. We include the selective role of atomic alignment and of the electron transfer mechanism. The state-to-state reaction probability is evaluated and a unifying description of the main experimental findings is obtained. Further, we reproduce the results of recent and advanced molecular beam experiments with a state selected Ne* beam. The selective role of electronic rearrangements within the transition state, quantified through the use of suitable operative relations, could cast light on many other chemical processes more difficult to characterize.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1474023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact