In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by means of the modulus of continuity in the general setting of Orlicz spaces. As a consequence, the qualitative order of convergence can be obtained, in case of functions belonging to suitable Lipschitz classes. In the particular instance of L^p-spaces, using a direct approach, we obtain a sharper estimate than that one that can be deduced from the general case.

Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces

ANGELONİ, Laura
Membro del Collaboration Group
;
COSTARELLI, Danilo
Membro del Collaboration Group
;
SAMBUCİNİ, Anna Rita
Membro del Collaboration Group
;
VINTI, Gianluca
Membro del Collaboration Group
2021

Abstract

In this paper, we establish a quantitative estimate for multivariate sampling Kantorovich operators by means of the modulus of continuity in the general setting of Orlicz spaces. As a consequence, the qualitative order of convergence can be obtained, in case of functions belonging to suitable Lipschitz classes. In the particular instance of L^p-spaces, using a direct approach, we obtain a sharper estimate than that one that can be deduced from the general case.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1489668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact