A new theoretical method, developed by our laboratory to describe the microscopic dynamics of gas-phase elementary chemi-ionization reactions, has been applied recently to study prototype atom-atom processes involving reactions between electronically excited metastable Ne*(3P2,0) and heavier noble gas atoms. Important aspects of electronic rearrangement selectivity have been emphasized that suggested the existence of two fundamental microscopic reaction mechanisms. The distinct mechanisms, which are controlled by intermolecular forces of chemical and noncovalent nature respectively, emerge under different conditions, and their balance depends on the collision energy regime investigated. The present paper provides the first step for the extension of the method to cases involving molecules of increasing complexity, whose chemi-ionization reactions are of relevance in several fields of basic and applied researches. The focus is here on the reactions of Ne∗ with simple inorganic molecules as Cl2 and NH3, and the application of the method discloses relevant features of the reaction microscopic evolution. In particular, this study shows that the balance of two fundamental reaction mechanisms depends not only on the collision energy and on the relative orientation of reagents but also on the orbital angular momentum of each collision complex. The additional insights so emphasized are of general relevance to assess in detail the stereodynamics of many other elementary processes.

Chemi-Ionization Reactions and Basic Stereodynamical Effects in Collisions of Atom-Molecule Reagents

Falcinelli S.
;
Vecchiocattivi F.;Pirani F.
2021

Abstract

A new theoretical method, developed by our laboratory to describe the microscopic dynamics of gas-phase elementary chemi-ionization reactions, has been applied recently to study prototype atom-atom processes involving reactions between electronically excited metastable Ne*(3P2,0) and heavier noble gas atoms. Important aspects of electronic rearrangement selectivity have been emphasized that suggested the existence of two fundamental microscopic reaction mechanisms. The distinct mechanisms, which are controlled by intermolecular forces of chemical and noncovalent nature respectively, emerge under different conditions, and their balance depends on the collision energy regime investigated. The present paper provides the first step for the extension of the method to cases involving molecules of increasing complexity, whose chemi-ionization reactions are of relevance in several fields of basic and applied researches. The focus is here on the reactions of Ne∗ with simple inorganic molecules as Cl2 and NH3, and the application of the method discloses relevant features of the reaction microscopic evolution. In particular, this study shows that the balance of two fundamental reaction mechanisms depends not only on the collision energy and on the relative orientation of reagents but also on the orbital angular momentum of each collision complex. The additional insights so emphasized are of general relevance to assess in detail the stereodynamics of many other elementary processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1493146
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact