The highest part of the Nera River basin (Central Italy) hosts significant water resources for drinking, hydroelectric, and aquaculture purposes. The river is fed by fractured large carbonate aquifers interconnected by Jurassic and Quaternary normal faults in an area characterized by high seismicity. The October 30, 2016, seismic sequence in Central Italy produced an abrupt increase in river discharge, which lasted for several months. The analysis of the recession curves well documented the processes occurring within the basal aquifer feeding the Nera River. In detail, a straight line has described the river discharge during the two years after the 2016 seismic sequence, indicating that a turbulent flow characterized the emptying process of the hydrogeological system. A permeability enhancement of the aquifer feeding the Nera River—due to cleaning of fractures and the co-seismic fracturing in the recharge area—coupled with an increase in groundwater flow velocity can explain this process. The most recent recession curves (2019 and 2020 periods) fit very well with the pre-seismic ones, indicating that after two years from the mainshock, the recession process recovered to the same pre-earthquake conditions (laminar flow). This behavior makes the hydrogeological system less vulnerable to prolonged

Groundwater-Surface Water Interaction in the Nera River Basin (Central Italy): New Insights after the 2016 Seismic Sequence

Di Matteo, Lucio
;
Porreca, Massimiliano;Pauselli, Cristina
2021

Abstract

The highest part of the Nera River basin (Central Italy) hosts significant water resources for drinking, hydroelectric, and aquaculture purposes. The river is fed by fractured large carbonate aquifers interconnected by Jurassic and Quaternary normal faults in an area characterized by high seismicity. The October 30, 2016, seismic sequence in Central Italy produced an abrupt increase in river discharge, which lasted for several months. The analysis of the recession curves well documented the processes occurring within the basal aquifer feeding the Nera River. In detail, a straight line has described the river discharge during the two years after the 2016 seismic sequence, indicating that a turbulent flow characterized the emptying process of the hydrogeological system. A permeability enhancement of the aquifer feeding the Nera River—due to cleaning of fractures and the co-seismic fracturing in the recharge area—coupled with an increase in groundwater flow velocity can explain this process. The most recent recession curves (2019 and 2020 periods) fit very well with the pre-seismic ones, indicating that after two years from the mainshock, the recession process recovered to the same pre-earthquake conditions (laminar flow). This behavior makes the hydrogeological system less vulnerable to prolonged
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1494280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact