This study aimed to assess the heart rate (HR) responses of avalanche SAR dogs and handlers under working field conditions. Thirteen SAR units (dogs and handlers) performed an exercise (Endurance) consisting of approximately 5.5 km of rough tracks through deep snow, at an altitude of 1991–2250 m.a.s.l. The exercise was repeated twice for each of the two different tracks. Both handlers and dogs were equipped with a global positioning satellite/heart rate (GPS/HR) system (Polar®). Multivariable models were used to evaluate the effects of environmental (i.e., gradient, altitude, track, and time) and intrinsic (i.e., speed, repetition, and breed) factors on changes from baseline HR (∆%HR). The dog’s ∆%HR was greater in the flat and uphill compared with downhill, and increased progressively as the speed increased (p < 0.001). Moreover, it rose at altitudes above 2100 m.a.s.l. and peaked after 30 min of the Endurance activity (p < 0.01). These findings indicated that HR monitors could be a valuable tool to contribute to the evaluation of avalanche dogs’ fitness in their real working environment. In contrast, the lack of correlation between the dogs’ and handlers’ HR changes suggests that handlers might not perceive the physical conditions of their dog in real-time. Thus, implementing protocols to monitor avalanche SAR dogs’ fitness using a GPS/HR monitoring system could help handlers to tailor the training and workload and to detect the risk factors for physical distress of working dogs.

How Do Avalanche Dogs (and Their Handlers) Cope with Physical Exercise? Heart Rate Changes during Endurance in a Snowy Environment

Menchetti L.;Iaboni M.;Guelfi G.;Diverio S.
2022

Abstract

This study aimed to assess the heart rate (HR) responses of avalanche SAR dogs and handlers under working field conditions. Thirteen SAR units (dogs and handlers) performed an exercise (Endurance) consisting of approximately 5.5 km of rough tracks through deep snow, at an altitude of 1991–2250 m.a.s.l. The exercise was repeated twice for each of the two different tracks. Both handlers and dogs were equipped with a global positioning satellite/heart rate (GPS/HR) system (Polar®). Multivariable models were used to evaluate the effects of environmental (i.e., gradient, altitude, track, and time) and intrinsic (i.e., speed, repetition, and breed) factors on changes from baseline HR (∆%HR). The dog’s ∆%HR was greater in the flat and uphill compared with downhill, and increased progressively as the speed increased (p < 0.001). Moreover, it rose at altitudes above 2100 m.a.s.l. and peaked after 30 min of the Endurance activity (p < 0.01). These findings indicated that HR monitors could be a valuable tool to contribute to the evaluation of avalanche dogs’ fitness in their real working environment. In contrast, the lack of correlation between the dogs’ and handlers’ HR changes suggests that handlers might not perceive the physical conditions of their dog in real-time. Thus, implementing protocols to monitor avalanche SAR dogs’ fitness using a GPS/HR monitoring system could help handlers to tailor the training and workload and to detect the risk factors for physical distress of working dogs.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1503837
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact