We analyzed the contribution of intracellular signaling to the functional plasticity of dendritic cells (DCs) presenting Candida albicans, a human commensal associated with severe diseases. Distinct intracellular pathways were activated by recognition of different fungal morphotypes in distinct DC subsets and in Peyer's patches DCs. Inflammatory DCs initiated Th17/Th2 responses to yeasts through the adaptor myeloid differentiation factor-88 (MyD88), whereas tolerogenic DCs activate Th1/T regulatory cell (Treg) differentiation programs to hyphae involving Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) as an intermediary of signaling. In addition, signal transducer and activator of transcription 3 (STAT3), affecting the balance between canonical and non-canonical activation of nuclear factor-kappaB (NF-kappaB) and 2,3 indoleamine dioxygenase (IDO), pivotally contributed to DC plasticity and functional specialization. As Candida-induced tolerogenic DCs ameliorated experimental colitis, our data qualify Candida as a commensal with immunoregulatory activity, resulting from the orchestrated usage of multiple, yet functionally distinct, receptor-signaling pathways in DCs. Ultimately, affecting the local Th17/Treg balance might likely be exploited by the fungus for either commensalism or pathogenicity.

Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans.

BONIFAZI, PIERLUIGI;ZELANTE, TERESA;D'ANGELO, CARMEN;DE LUCA, ANTONELLA;MORETTI, SILVIA;BOZZA, Silvia;PERRUCCIO, Katia;IANNITTI, ROSSANA GIULIETTA;GIOVANNINI, GLORIA;VOLPI, CLAUDIA;FALLARINO, Francesca;PUCCETTI, Paolo;ROMANI, Luigina
2009-01-01

Abstract

We analyzed the contribution of intracellular signaling to the functional plasticity of dendritic cells (DCs) presenting Candida albicans, a human commensal associated with severe diseases. Distinct intracellular pathways were activated by recognition of different fungal morphotypes in distinct DC subsets and in Peyer's patches DCs. Inflammatory DCs initiated Th17/Th2 responses to yeasts through the adaptor myeloid differentiation factor-88 (MyD88), whereas tolerogenic DCs activate Th1/T regulatory cell (Treg) differentiation programs to hyphae involving Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) as an intermediary of signaling. In addition, signal transducer and activator of transcription 3 (STAT3), affecting the balance between canonical and non-canonical activation of nuclear factor-kappaB (NF-kappaB) and 2,3 indoleamine dioxygenase (IDO), pivotally contributed to DC plasticity and functional specialization. As Candida-induced tolerogenic DCs ameliorated experimental colitis, our data qualify Candida as a commensal with immunoregulatory activity, resulting from the orchestrated usage of multiple, yet functionally distinct, receptor-signaling pathways in DCs. Ultimately, affecting the local Th17/Treg balance might likely be exploited by the fungus for either commensalism or pathogenicity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/152547
Citazioni
  • ???jsp.display-item.citation.pmc??? 54
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 103
social impact