Smoothing over a domain with irregular boundaries or interior gaps and holes is addressed. Consider the problem of estimating mercury in sediment concentrations in the estuarine waters in New Hampshire. A modified version of low-rank thin plate splines (LTPS) is introduced where the geodesic distance is applied to evaluate dissimilarity of any two data observations: loosely speaking, distances between locations are not measured as the crow flies, but as the fish swims. The method is compared with competing smoothing techniques, LTPS, and finite element L-splines.
Low-Rank Smoothing Splines on Complicated Domains
RANALLI, Maria Giovanna
2007
Abstract
Smoothing over a domain with irregular boundaries or interior gaps and holes is addressed. Consider the problem of estimating mercury in sediment concentrations in the estuarine waters in New Hampshire. A modified version of low-rank thin plate splines (LTPS) is introduced where the geodesic distance is applied to evaluate dissimilarity of any two data observations: loosely speaking, distances between locations are not measured as the crow flies, but as the fish swims. The method is compared with competing smoothing techniques, LTPS, and finite element L-splines.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.