High molecular weight zinc ion-dependent acid p-nitrophenylphosphatase (HMW-ZnAPase) was purified from bovine liver to homogeneity as judged by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The partial sequence of the purified enzyme electroblotted on PVDF membrane reveals a 95% sequence homology with human and bovine liver fructose-1,6-bisphosphate aldolase isozyme B (FALD B). FALD B was isolated from bovine liver using an affinity elution from phosphocellulose column. FALD B from bovine liver shows a native and subunit molecular weight that is indistinguishable from that of HMW-ZnAPase. In addition, an affinity purified antiserum raised in rabbits against purified HMW-ZnAPase cross-reacts with bovine liver FALD B and rabbit muscle isozymes. Despite these similarities, HMW-ZnAPase does not show FALD activity and bovine liver FALD does not display any zinc ion-p-nitrophenylphosphatase activity. These results suggested the existence of structural and immunological similarities between bovine liver HMW-ZnAPase and FALD B. Differences in some amino acid residues in enzyme activity indicate that they may be involved in different biochemical functions. (C) 2001 Elsevier Science B.V. All rights reserved.
Structural and immunological similarities between high molecular weight zinc ion-dependent p-nitrophenylphosphatase and fructose-1,6-bisphosphate aldolase from bovine liver
Pellegrini, M;Angiolillo, A;Lucentini, L;
2001
Abstract
High molecular weight zinc ion-dependent acid p-nitrophenylphosphatase (HMW-ZnAPase) was purified from bovine liver to homogeneity as judged by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The partial sequence of the purified enzyme electroblotted on PVDF membrane reveals a 95% sequence homology with human and bovine liver fructose-1,6-bisphosphate aldolase isozyme B (FALD B). FALD B was isolated from bovine liver using an affinity elution from phosphocellulose column. FALD B from bovine liver shows a native and subunit molecular weight that is indistinguishable from that of HMW-ZnAPase. In addition, an affinity purified antiserum raised in rabbits against purified HMW-ZnAPase cross-reacts with bovine liver FALD B and rabbit muscle isozymes. Despite these similarities, HMW-ZnAPase does not show FALD activity and bovine liver FALD does not display any zinc ion-p-nitrophenylphosphatase activity. These results suggested the existence of structural and immunological similarities between bovine liver HMW-ZnAPase and FALD B. Differences in some amino acid residues in enzyme activity indicate that they may be involved in different biochemical functions. (C) 2001 Elsevier Science B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.