The definition of the patterns of cell division and expansion in plant development is of fundamental importance in understanding the mechanics of morphogenesis. By studying cell division and expansion patterns, we have assembled a developmental map of Petunia hybrida petals. Cycling cells were labelled with in situ markers of the cell cycle, whereas cell expansion was followed by assessing cell size in representative regions of developing petals. The outlined cell division and expansion patterns were related to organ asymmetry. Initially, cell divisions are uniformly distributed throughout the petal and decline gradually, starting from the basal part, to form a striking gradient of acropetal polarity. Cell areas, in contrast, increased first in the basal portion and then gradually towards the petal tip. This growth strategy highlighted a cell size control model based on cell-cycle departure time. The dorso-ventral asymmetry can be explained in terms of differential regulation of cell expansion. Cells of the abaxial epidermis enlarged earlier to a higher final extent than those of the adaxial epidermis. Epidermal appendage differentiation contributed to the remaining asymmetry. On the whole our study provides a sound basis for mutant analyses and to investigate the impact of specific (environmental) factors on petal growth. Fulltext Pre

Patterns of cell division and expansion in developing petals of Petunia hybrida.

REALE, Lara
;
PORCEDDU, Andrea
;
LANFALONI, Luisa
;
MORETTI, Chiaraluce
;
PEZZOTTI, Mario
;
ROMANO, Bruno
;
FERRANTI, Francesco
2002

Abstract

The definition of the patterns of cell division and expansion in plant development is of fundamental importance in understanding the mechanics of morphogenesis. By studying cell division and expansion patterns, we have assembled a developmental map of Petunia hybrida petals. Cycling cells were labelled with in situ markers of the cell cycle, whereas cell expansion was followed by assessing cell size in representative regions of developing petals. The outlined cell division and expansion patterns were related to organ asymmetry. Initially, cell divisions are uniformly distributed throughout the petal and decline gradually, starting from the basal part, to form a striking gradient of acropetal polarity. Cell areas, in contrast, increased first in the basal portion and then gradually towards the petal tip. This growth strategy highlighted a cell size control model based on cell-cycle departure time. The dorso-ventral asymmetry can be explained in terms of differential regulation of cell expansion. Cells of the abaxial epidermis enlarged earlier to a higher final extent than those of the adaxial epidermis. Epidermal appendage differentiation contributed to the remaining asymmetry. On the whole our study provides a sound basis for mutant analyses and to investigate the impact of specific (environmental) factors on petal growth. Fulltext Pre
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/154635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 41
social impact