Research into land-atmosphere coupling within the African Monsoon Multidisciplinary Analysis has highlighted the atmospheric impact of soil moisture on space scales of 5 km upwards and time scales of several days. Observational and modelling studies have shown how antecedent rainfall patterns affect new storms in the Sahel. The land feedback operates through various mechanisms, including a direct link to afternoon storm initiation from surface-induced mesoscale circulations, and indirectly via a large-scale moisture transport in the nocturnal monsoon. The results suggest potential for significant improvements in weather forecasting through assimilation of satellite data. Intriguing questions remain about the importance of vegetation memory on seasonal-interannual scales. Copyright (C) 2011 Royal Meteorological Society
New perspectives on land-atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis
Paolina Cerlini;
2011
Abstract
Research into land-atmosphere coupling within the African Monsoon Multidisciplinary Analysis has highlighted the atmospheric impact of soil moisture on space scales of 5 km upwards and time scales of several days. Observational and modelling studies have shown how antecedent rainfall patterns affect new storms in the Sahel. The land feedback operates through various mechanisms, including a direct link to afternoon storm initiation from surface-induced mesoscale circulations, and indirectly via a large-scale moisture transport in the nocturnal monsoon. The results suggest potential for significant improvements in weather forecasting through assimilation of satellite data. Intriguing questions remain about the importance of vegetation memory on seasonal-interannual scales. Copyright (C) 2011 Royal Meteorological SocietyI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.