This research deals with the transformation of an anthropomorphous landfill covering composed of a fill soil mixed with mechanically separated municipal waste compost. The study site was a municipal landfill near Perugia, Italy. Throughout the years, waste disposal in the landfill was performed by burial in horizontal layers, each one representing a yearly disposal. The external front of the landfill thus represented the yearly disposal over a 10-yr period starting in 1993. Temporal changes in the anthropomorphous soil over this period were studied by examining and describing soil profiles, and by collecting and analyzing soil samples from the 1993, 1994, 1997, and 2001 disposals. The samples were subjected to a series of physical, chemical, and biochemical analyses. The results obtained suggest that over a 10-yr period the top layer gained a pedological structure (subangular blocky and/or crumb) giving rise to an A horizon. Improved soil structure was confirmed by an increase in macroporosity, particularly for pores larger than 50 μm, measured by image analysis of soil thin sections. Total extractable carbon showed an increase in the content of humic substances, evidenced by parameters of humification. Enzymatic activities in the A and C1 horizons were also indicative of soil evolution and may serve as a valid indicator for monitoring the evolution of anthropogenic soils containing municipal waste compost.
Transformation of a landfill covering amended with municipal waste compost, Perugia, Italy
BUSINELLI, MarioSupervision
;CALANDRA, RolandoWriting – Review & Editing
;BUSINELLI, DanielaWriting – Review & Editing
;GIGLIOTTI, GiovanniWriting – Review & Editing
;LECCESE, AngeloWriting – Original Draft Preparation
2007
Abstract
This research deals with the transformation of an anthropomorphous landfill covering composed of a fill soil mixed with mechanically separated municipal waste compost. The study site was a municipal landfill near Perugia, Italy. Throughout the years, waste disposal in the landfill was performed by burial in horizontal layers, each one representing a yearly disposal. The external front of the landfill thus represented the yearly disposal over a 10-yr period starting in 1993. Temporal changes in the anthropomorphous soil over this period were studied by examining and describing soil profiles, and by collecting and analyzing soil samples from the 1993, 1994, 1997, and 2001 disposals. The samples were subjected to a series of physical, chemical, and biochemical analyses. The results obtained suggest that over a 10-yr period the top layer gained a pedological structure (subangular blocky and/or crumb) giving rise to an A horizon. Improved soil structure was confirmed by an increase in macroporosity, particularly for pores larger than 50 μm, measured by image analysis of soil thin sections. Total extractable carbon showed an increase in the content of humic substances, evidenced by parameters of humification. Enzymatic activities in the A and C1 horizons were also indicative of soil evolution and may serve as a valid indicator for monitoring the evolution of anthropogenic soils containing municipal waste compost.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.