Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. Staphylococcus aureus (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin–Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens’ presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.
Combining multiple spectroscopic techniques to reveal the effects of Staphylococcus aureus infection on human bone tissues
M. Alunni Cardinali
;S. Stefani;A. Morresi;D. Fioretto;P. Sassi
In corso di stampa
Abstract
Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. Staphylococcus aureus (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin–Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens’ presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.