The Sequence-Specific Amplification Polymorphism(S-SAP)method, recently derived from the Amplified Fragment Length Polymorphism (AFLP) technique, produces amplified fragments containing a retrotransposon LTR sequence at one end and a host restriction site at the other. We report the application of this procedure to the LTR of the Tms1 element from Medicago sativa L. Genomic dot-blot analysis indicated that Tms1 LTRs represent about 0.056% of the M. sativa genome, corresponding to 16x103 copies per haploid genome. An average of 66 markers were amplified for each primer combination. Overall 49 polymorphic fragments were reliably scored and mapped in a F1 population obtained by crossing diploid M.falcata with M.coerulea. The utility of the LTR S-SAP markers was higher than that of AFLP or SAMPL (Selective Amplification of Microsatellite Polymorphic Loci) markers. The efficiency index of the LTR S-SAP assay was 28.3, whereas the corresponding values for AFLP and SAMPL markers were 21.1 and 16.7, respectively. The marker index for S-SAP was 13.1, compared to 8.8 for AFLP and 9.5 for SAMPL. Application of the Tms1 LTR-based S-SAP to double-stranded cDNA resulted in a complex banding pattern, demonstrating the presence of Tms1 LTRs within exons. As the technique was successfully applied to other species of the genus Medicago, it should prove suitable for studying genetic diversity within, and relatedness between, alfalfa species.

Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L.

ALBERTINI, Emidio;MARCONI, GIANPIERO;VERONESI, Fabio
2002

Abstract

The Sequence-Specific Amplification Polymorphism(S-SAP)method, recently derived from the Amplified Fragment Length Polymorphism (AFLP) technique, produces amplified fragments containing a retrotransposon LTR sequence at one end and a host restriction site at the other. We report the application of this procedure to the LTR of the Tms1 element from Medicago sativa L. Genomic dot-blot analysis indicated that Tms1 LTRs represent about 0.056% of the M. sativa genome, corresponding to 16x103 copies per haploid genome. An average of 66 markers were amplified for each primer combination. Overall 49 polymorphic fragments were reliably scored and mapped in a F1 population obtained by crossing diploid M.falcata with M.coerulea. The utility of the LTR S-SAP markers was higher than that of AFLP or SAMPL (Selective Amplification of Microsatellite Polymorphic Loci) markers. The efficiency index of the LTR S-SAP assay was 28.3, whereas the corresponding values for AFLP and SAMPL markers were 21.1 and 16.7, respectively. The marker index for S-SAP was 13.1, compared to 8.8 for AFLP and 9.5 for SAMPL. Application of the Tms1 LTR-based S-SAP to double-stranded cDNA resulted in a complex banding pattern, demonstrating the presence of Tms1 LTRs within exons. As the technique was successfully applied to other species of the genus Medicago, it should prove suitable for studying genetic diversity within, and relatedness between, alfalfa species.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/159430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact