Blends of chemically readily accessible, small-molecular arylacetylene derivatives with poly(vinylidene fluoride) (PVDF) are presented that allow reliable solution processing of field-effect transistor (FET) architectures with electronic characteristics comparable to those of the neat semiconductors. We demonstrate that having the chemical means and corresponding processing protocols to control solid-state microstructures by either adjusting the chemical nature of the organic semiconductor, blend composition or deposition temperature, permit straight-forward comparison between materials and allow probing if electronic characteristics are affected by the chemical structure of the organic semiconductor and/or selected processing protocols.

Influence of molecular architecture and processing on properties of semiconducting arylacetylene: Insulating poly(vinylidene fluoride) blends

VACCARO, Luigi;MARROCCHI, Assunta
2011

Abstract

Blends of chemically readily accessible, small-molecular arylacetylene derivatives with poly(vinylidene fluoride) (PVDF) are presented that allow reliable solution processing of field-effect transistor (FET) architectures with electronic characteristics comparable to those of the neat semiconductors. We demonstrate that having the chemical means and corresponding processing protocols to control solid-state microstructures by either adjusting the chemical nature of the organic semiconductor, blend composition or deposition temperature, permit straight-forward comparison between materials and allow probing if electronic characteristics are affected by the chemical structure of the organic semiconductor and/or selected processing protocols.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/367694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact