Selectable marker genes (SMGs) are still useful to efficiently obtain transgenic plants, although marker-free techniques are available, but with limitations. The presence of SMGs, especially bacterial antibiotic resistance genes, in transgenic crops is criticized. Fortunately, several genes isolated from plants are available that can serve as SMGs. Here, I review the plant genes reported to have been used as SMGs. Some are wild-type genes that, when overexpressed, confer a selective advantage during in vitro plant regeneration, whereas some are mutated genes encoding enzymes resistant to inhibitory chemicals. Most of the genes have not yet been tested in a significant number of species. The effect of SMGs expression on the phenotype has often been superficially examined and should be better characterized. The sequence conservation of some SMGs could allow derivation of a SMGs from any plant species, if an intragenic or cisgenic approach to genetic engineering is preferred. I conclude that several promising SMGs have been isolated from plants, allowing avoidance of bacterial genes for transformation, transgene stacking, and intragenic or cisgenic engineering approaches. Nonetheless, further testing in more plant species would be useful to fully assess phenotypic neutrality, efficiency, and versatility. Patent rights restrict the immediate use of most plant SMGs for commercial applications, but freely available marker systems do exist.

Selectable marker genes from plants: reliability and potential

ROSELLINI, Daniele
2011

Abstract

Selectable marker genes (SMGs) are still useful to efficiently obtain transgenic plants, although marker-free techniques are available, but with limitations. The presence of SMGs, especially bacterial antibiotic resistance genes, in transgenic crops is criticized. Fortunately, several genes isolated from plants are available that can serve as SMGs. Here, I review the plant genes reported to have been used as SMGs. Some are wild-type genes that, when overexpressed, confer a selective advantage during in vitro plant regeneration, whereas some are mutated genes encoding enzymes resistant to inhibitory chemicals. Most of the genes have not yet been tested in a significant number of species. The effect of SMGs expression on the phenotype has often been superficially examined and should be better characterized. The sequence conservation of some SMGs could allow derivation of a SMGs from any plant species, if an intragenic or cisgenic approach to genetic engineering is preferred. I conclude that several promising SMGs have been isolated from plants, allowing avoidance of bacterial genes for transformation, transgene stacking, and intragenic or cisgenic engineering approaches. Nonetheless, further testing in more plant species would be useful to fully assess phenotypic neutrality, efficiency, and versatility. Patent rights restrict the immediate use of most plant SMGs for commercial applications, but freely available marker systems do exist.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/427095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact