A recently introduced bond-bond formulation of the intermolecular interaction has been extended to six-atom systems to the end of assembling a new potential energy surface (PES) and has been incorporated into a grid empowered simulator able to handle the modeling of the CO 2 + CO 2 processes. The proposed PES is full dimensional and accounts for the dependence of the intermolecular interaction on some basic physical properties of the colliding partners, including modulations induced by the monomer deformation. The used analytical formulation of the interaction involves a limited number of parameters, each having a clear physical meaning. Guess values for these parameters can also be obtained from analytical correlation formulae. Such estimates can then be fine tuned by exploiting experimental and theoretical information. The resulting PES well describes stretched and bent asymptotic CO 2 monomers as well as the CO 2-CO 2 interaction in the most and less stable configurations. On this potential massive quasiclassical elastic and inelastic detailed scattering trajectories have been integrated, by exploiting the innovative computational technologies of the grid. The efficiency of the approach used and the reliability of the estimates of the dynamical properties obtained in this way is such that we can now plan a systematic evaluation of the state specific rate coefficient matrix elements needed for space craft reentry modeling. Here, we present probabilities and cross sections useful to rationalize some typical mechanisms characterizing the vibrational transitions of the CO 2 + CO 2 system on the flexible monomer proposed PES. On such PES, the key dynamical outcomes are: (a) there is a strong energy interchange between symmetric stretching of the reactants and bending of the products (and viceversa) while asymmetric stretching is strongly adiabatic (b) reactant energy is more efficiently allocated (with respect to the rigid monomers PES) as product vibration when reactant stretching modes are excited while the contrary is true when the reactant bending mode is excited.
A full dimensional grid empowered simulation of the CO2 + CO2 processes
PIRANI, Fernando;LAGANA', Antonio;LOMBARDI, Andrea
2012
Abstract
A recently introduced bond-bond formulation of the intermolecular interaction has been extended to six-atom systems to the end of assembling a new potential energy surface (PES) and has been incorporated into a grid empowered simulator able to handle the modeling of the CO 2 + CO 2 processes. The proposed PES is full dimensional and accounts for the dependence of the intermolecular interaction on some basic physical properties of the colliding partners, including modulations induced by the monomer deformation. The used analytical formulation of the interaction involves a limited number of parameters, each having a clear physical meaning. Guess values for these parameters can also be obtained from analytical correlation formulae. Such estimates can then be fine tuned by exploiting experimental and theoretical information. The resulting PES well describes stretched and bent asymptotic CO 2 monomers as well as the CO 2-CO 2 interaction in the most and less stable configurations. On this potential massive quasiclassical elastic and inelastic detailed scattering trajectories have been integrated, by exploiting the innovative computational technologies of the grid. The efficiency of the approach used and the reliability of the estimates of the dynamical properties obtained in this way is such that we can now plan a systematic evaluation of the state specific rate coefficient matrix elements needed for space craft reentry modeling. Here, we present probabilities and cross sections useful to rationalize some typical mechanisms characterizing the vibrational transitions of the CO 2 + CO 2 system on the flexible monomer proposed PES. On such PES, the key dynamical outcomes are: (a) there is a strong energy interchange between symmetric stretching of the reactants and bending of the products (and viceversa) while asymmetric stretching is strongly adiabatic (b) reactant energy is more efficiently allocated (with respect to the rigid monomers PES) as product vibration when reactant stretching modes are excited while the contrary is true when the reactant bending mode is excited.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.