The place recognition module is a fundamental component in SLAM systems, as incorrect loop closures may result in severe errors in trajectory estimation. In the case of appearance-based methods the bag-of-words approach is typically employed for recognizing locations. This paper in- troduces a novel algorithm for improving loop closures detec- tion performance by adopting a set of visual words weights, learned offline accordingly to a discriminative criterion. The proposed weights learning approach, based on the large margin paradigm, can be used for generic similarity functions and relies on an efficient online leaning algorithm in the training phase. As the computed weights are usually very sparse, a gain in terms of computational cost at recognition time is also obtained. Our experiments, conducted on publicly available datasets, demonstrate that the discriminative weights lead to loop closures detection results that are more accurate than the traditional bag-of-words method and that our place recognition approach is competitive with state-of-the-art methods.

A Discriminative Approach for Appearance Based Loop Closing

CIARFUGLIA, THOMAS ALESSANDRO;COSTANTE, GABRIELE;VALIGI, Paolo;RICCI, ELISA
2012

Abstract

The place recognition module is a fundamental component in SLAM systems, as incorrect loop closures may result in severe errors in trajectory estimation. In the case of appearance-based methods the bag-of-words approach is typically employed for recognizing locations. This paper in- troduces a novel algorithm for improving loop closures detec- tion performance by adopting a set of visual words weights, learned offline accordingly to a discriminative criterion. The proposed weights learning approach, based on the large margin paradigm, can be used for generic similarity functions and relies on an efficient online leaning algorithm in the training phase. As the computed weights are usually very sparse, a gain in terms of computational cost at recognition time is also obtained. Our experiments, conducted on publicly available datasets, demonstrate that the discriminative weights lead to loop closures detection results that are more accurate than the traditional bag-of-words method and that our place recognition approach is competitive with state-of-the-art methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1030119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact