In recent years, a rare form of autosomal recessive brachyolmia associated with amelo-genesis imperfecta (AI) has been described as a novel nosologic entity. This disorder is characterized by skeletal dysplasia (e.g., platyspondyly, short trunk, scoliosis, broad ilia, elongated femoral necks with coxa valga) and severe enamel and dental anomalies. Pathogenic variants in the latent transforming growth factor-β binding protein 3 (LTBP3) gene have been found implicated in the patho-genesis of this disorder. So far, biallelic pathogenic LTBP3 variants have been identified in less than 10 families. We here report a young boy born from consanguineous parents with a complex phenotype including skeletal dysplasia associated with aortic stenosis, hypertrophic cardiomyopathy, hy-podontia and amelogenesis imperfecta caused by a previously unreported homozygous LTBP3 splice site variant. We also compare the genotypes and phenotypes of patients reported to date. This work provides further evidence that brachyolmia with amelogenesis imperfecta is a distinct nosologic entity and that variations in LTBP3 are involved in its pathogenesis.
A rare case of brachyolmia with amelogenesis imperfecta caused by a new pathogenic splicing variant in ltbp3
Rogaia D.;Mencarelli A.;Di Cara G.;Verrotti A.;Troiani S.;Tartaglia M.;Prontera P.
2021
Abstract
In recent years, a rare form of autosomal recessive brachyolmia associated with amelo-genesis imperfecta (AI) has been described as a novel nosologic entity. This disorder is characterized by skeletal dysplasia (e.g., platyspondyly, short trunk, scoliosis, broad ilia, elongated femoral necks with coxa valga) and severe enamel and dental anomalies. Pathogenic variants in the latent transforming growth factor-β binding protein 3 (LTBP3) gene have been found implicated in the patho-genesis of this disorder. So far, biallelic pathogenic LTBP3 variants have been identified in less than 10 families. We here report a young boy born from consanguineous parents with a complex phenotype including skeletal dysplasia associated with aortic stenosis, hypertrophic cardiomyopathy, hy-podontia and amelogenesis imperfecta caused by a previously unreported homozygous LTBP3 splice site variant. We also compare the genotypes and phenotypes of patients reported to date. This work provides further evidence that brachyolmia with amelogenesis imperfecta is a distinct nosologic entity and that variations in LTBP3 are involved in its pathogenesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.