Wild sunflower (Helianthus annuus L.) is an invasive species widely distributed in several regions of the world, where it shares a large area with domesticated sunflower. The imidazolinone-tolerant sunflower enables the control of problematic weeds (such as Xanthium spp., Brassica spp., wild sunflower) with imidazolinone herbicides (Clearfield® production system) in cultivated sunflower crops, but could facilitate the gene transfer of herbicide resistance, from cultivated sunflower to wild sunflower, generating hard-to-control weed biotypes or herbicide-resistant populations. The development of new practices that involve the selective inhibition of reproduction structures, such as pollen granules, could be an innovative strategy to minimize outcrossing and the origin of weed–crop hybrids in Clearfield® production systems. In this study, the effects of mugwort (Artemisia vulgaris L.) aqueous extract on cytosolic Ca2+ and the germination of pollen grains collected from conventional, wild and IMI-tolerant sunflower were tested. The results showed that mugwort deregulated Ca2+ homeostasis and markedly reduced the germination of conventional and wild sunflower pollen, but not IMI-tolerant pollen. The HPLC analysis revealed the presence of phenolic acids belonging to the hydroxycinnamic and benzoic classes in the mugwort extract. Hydroxycinnamic acids (caffeic and ferulic) deregulated the cytosolic Ca2+ of conventional and wild sunflower pollen, but not those which were IMI-tolerant, similar to mugwort extract. Selective inhibition of wild sunflower pollen in the Clearfield® sunflower crop contributes to a possible new weed management strategy, reducing the wild sunflower reproduction by seed, minimizing the potential risks of outcrossing with the formation of weed–crop hybrids. The Ca2+ selective chelating activity of caffeic or ferulic acids provides elements to be investigated for their possible use as an alternative to mugwort extract.
Selective Inhibition of Wild Sunflower Reproduction with Mugwort Aqueous Extract, Tested on Cytosolic Ca2+ and Germination of the Pollen Grains
Alberto Marco Del PinoWriting – Review & Editing
;Euro Pannacci
Writing – Review & Editing
;Alessandro Di MicheleFormal Analysis
;Elisabetta BraviFormal Analysis
;Ombretta MarconiMembro del Collaboration Group
;Francesco TeiMembro del Collaboration Group
;Carlo Alberto PalmeriniWriting – Original Draft Preparation
2021
Abstract
Wild sunflower (Helianthus annuus L.) is an invasive species widely distributed in several regions of the world, where it shares a large area with domesticated sunflower. The imidazolinone-tolerant sunflower enables the control of problematic weeds (such as Xanthium spp., Brassica spp., wild sunflower) with imidazolinone herbicides (Clearfield® production system) in cultivated sunflower crops, but could facilitate the gene transfer of herbicide resistance, from cultivated sunflower to wild sunflower, generating hard-to-control weed biotypes or herbicide-resistant populations. The development of new practices that involve the selective inhibition of reproduction structures, such as pollen granules, could be an innovative strategy to minimize outcrossing and the origin of weed–crop hybrids in Clearfield® production systems. In this study, the effects of mugwort (Artemisia vulgaris L.) aqueous extract on cytosolic Ca2+ and the germination of pollen grains collected from conventional, wild and IMI-tolerant sunflower were tested. The results showed that mugwort deregulated Ca2+ homeostasis and markedly reduced the germination of conventional and wild sunflower pollen, but not IMI-tolerant pollen. The HPLC analysis revealed the presence of phenolic acids belonging to the hydroxycinnamic and benzoic classes in the mugwort extract. Hydroxycinnamic acids (caffeic and ferulic) deregulated the cytosolic Ca2+ of conventional and wild sunflower pollen, but not those which were IMI-tolerant, similar to mugwort extract. Selective inhibition of wild sunflower pollen in the Clearfield® sunflower crop contributes to a possible new weed management strategy, reducing the wild sunflower reproduction by seed, minimizing the potential risks of outcrossing with the formation of weed–crop hybrids. The Ca2+ selective chelating activity of caffeic or ferulic acids provides elements to be investigated for their possible use as an alternative to mugwort extract.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.