In-flight sensor fault diagnosis and recursive combination of residual signals via the Dempster-Shafer (DS) theory have been considered in this study. In particular, a novel evidence-based combination rule of residual errors as a function of a reliability measure derived from streaming data is proposed for the purpose of online robust sensors fault diagnosis. The proposed information fusion mechanism is divided into three steps. In the first step, the classic DS probability mass combination rule is applied; then, the difference between the previous posterior mass and the current prior mass associated with fault events is computed. Finally, the increment of the posterior mass of a fault event is weighted as a function of a reliability coefficient that depends on the norm of control activity. A Sensor Fault Isolation scheme based on the proposed combination rule has been worked out and compared with well-known state-of-the-art recursive combination rules. A quantitative analysis has been performed exploiting multi-flight data of a P92 Tecnam aircraft. The proposed approach showed to be effective, particularly in reducing the false alarms rate.

A robust data-driven fault diagnosis scheme based on recursive dempster-shafer combination rule

Cartocci N.;Costante G.;Crocetti F.;Valigi P.;Fravolini M. L.
2021

Abstract

In-flight sensor fault diagnosis and recursive combination of residual signals via the Dempster-Shafer (DS) theory have been considered in this study. In particular, a novel evidence-based combination rule of residual errors as a function of a reliability measure derived from streaming data is proposed for the purpose of online robust sensors fault diagnosis. The proposed information fusion mechanism is divided into three steps. In the first step, the classic DS probability mass combination rule is applied; then, the difference between the previous posterior mass and the current prior mass associated with fault events is computed. Finally, the increment of the posterior mass of a fault event is weighted as a function of a reliability coefficient that depends on the norm of control activity. A Sensor Fault Isolation scheme based on the proposed combination rule has been worked out and compared with well-known state-of-the-art recursive combination rules. A quantitative analysis has been performed exploiting multi-flight data of a P92 Tecnam aircraft. The proposed approach showed to be effective, particularly in reducing the false alarms rate.
2021
978-1-6654-2258-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1501150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact