We report the synthesis and structure-activity relationship (SAR) of a large series of acridones and acridone-fragment derivatives designed on the basis of the selective antihepatitis C virus (HCV) activity shown by acridone 2, previously studied as a potential antibovine viral diarrhea virus (BVDV) compound. The evaluation of their ability to inhibit the HCV replication in Huh-5-2 cells led to the identification of new, selective inhibitors. This indicates that the acridone skeleton, when properly functionalized, is a suitable scaffold to obtain potential anti-HCV agents. Interestingly, during identification of possible cellular and viral targets, it was discovered that compound 23 exerts inhibitory activity on the HCV NS3 helicase, a very promising target for the development of anti-HCV drugs.
Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor.
MANFRONI, GIUSEPPE;MASSARI, SERENA;TABARRINI, Oriana;CECCHETTI, Violetta;FRAVOLINI, Arnaldo;
2009
Abstract
We report the synthesis and structure-activity relationship (SAR) of a large series of acridones and acridone-fragment derivatives designed on the basis of the selective antihepatitis C virus (HCV) activity shown by acridone 2, previously studied as a potential antibovine viral diarrhea virus (BVDV) compound. The evaluation of their ability to inhibit the HCV replication in Huh-5-2 cells led to the identification of new, selective inhibitors. This indicates that the acridone skeleton, when properly functionalized, is a suitable scaffold to obtain potential anti-HCV agents. Interestingly, during identification of possible cellular and viral targets, it was discovered that compound 23 exerts inhibitory activity on the HCV NS3 helicase, a very promising target for the development of anti-HCV drugs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.