The limited number of drug classes licensed for treatment of influenza virus (Flu), together with the continuous emergence of viral variants and drug resistant mutants, highlights the urgent need to find antivirals with novel mechanisms of action. In this context, the viral RNA-dependent RNA polymerase (RdRP) subunits assembly has emerged as an attractive target. Starting from a cycloheptathiophene-3-carboxamide derivative recently identified by us for its ability to disrupt the interaction between the PA and PB1 subunits of RdRP, we have designed and synthesized a series of analogues. Their biological evaluation led to the identification of more potent protein-protein interaction inhibitors, endowed with antiviral activity that also encompassed a number of clinical isolates of FluA, including an oseltamivir-resistant strain, and FluB, without showing appreciable toxicity. From this study, the cycloheptathiophene-3-carboxamide scaffold emerged as being particularly suitable to impart anti-Flu activity.

Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly

MASSARI, SERENA;GORACCI, LAURA;SANCINETO, LUCA;SABATINI, STEFANO;MANFRONI, GIUSEPPE;CECCHETTI, Violetta;CRUCIANI, Gabriele;TABARRINI, Oriana
2013

Abstract

The limited number of drug classes licensed for treatment of influenza virus (Flu), together with the continuous emergence of viral variants and drug resistant mutants, highlights the urgent need to find antivirals with novel mechanisms of action. In this context, the viral RNA-dependent RNA polymerase (RdRP) subunits assembly has emerged as an attractive target. Starting from a cycloheptathiophene-3-carboxamide derivative recently identified by us for its ability to disrupt the interaction between the PA and PB1 subunits of RdRP, we have designed and synthesized a series of analogues. Their biological evaluation led to the identification of more potent protein-protein interaction inhibitors, endowed with antiviral activity that also encompassed a number of clinical isolates of FluA, including an oseltamivir-resistant strain, and FluB, without showing appreciable toxicity. From this study, the cycloheptathiophene-3-carboxamide scaffold emerged as being particularly suitable to impart anti-Flu activity.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1197477
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 49
social impact