In this paper, the results of a study on lipid fraction from goji berries are reported. A rapid and simple method based on magnetic stirring with chloroform/methanol mixture and final clean-up with deionized water was developed, which avoided the presence of polar substances in the final extract. The proposed method was compared with conventional (Folch and Soxhlet methods) and unconventional (hexane/2-propanol or methyl-tert-butyl ether extraction) procedures. Sixteen commercial goji samples have been extracted by the developed method; then, the fatty acid composition was determined by high-resolution gas chromatography-flame ionization detector (HRGC-FID) analysis of derivatized samples. Generally, the results obtained underlined the important role of goji berry as a natural source of unsaturated fatty acids (78.0–86.0 %) with a high content of n-6 polyunsaturated fatty acids (PUFA, 48.2–60.2 %), a satisfactory n-6/n-3 PUFA ratio, and a good PUFA/saturated fatty acid ratio. © 2016 Springer Science+Business Media New York

A Simple and Rapid Extraction Method to Evaluate the Fatty Acid Composition and Nutritional Value of Goji Berry Lipid

BLASI, FRANCESCA;MONTESANO, Domenico;SIMONETTI, Maria Stella;COSSIGNANI, Lina
2017

Abstract

In this paper, the results of a study on lipid fraction from goji berries are reported. A rapid and simple method based on magnetic stirring with chloroform/methanol mixture and final clean-up with deionized water was developed, which avoided the presence of polar substances in the final extract. The proposed method was compared with conventional (Folch and Soxhlet methods) and unconventional (hexane/2-propanol or methyl-tert-butyl ether extraction) procedures. Sixteen commercial goji samples have been extracted by the developed method; then, the fatty acid composition was determined by high-resolution gas chromatography-flame ionization detector (HRGC-FID) analysis of derivatized samples. Generally, the results obtained underlined the important role of goji berry as a natural source of unsaturated fatty acids (78.0–86.0 %) with a high content of n-6 polyunsaturated fatty acids (PUFA, 48.2–60.2 %), a satisfactory n-6/n-3 PUFA ratio, and a good PUFA/saturated fatty acid ratio. © 2016 Springer Science+Business Media New York
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1389636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact