Mycobacterium avium is a difficult-to-treat pathogen able to quickly develop drug resistance. Like for other microbial species, overexpression of efflux pumps is one of the main mechanisms in developing multidrug resistance. Although the use of efflux pumps inhibitors (EPIs) represents a promising strategy to reverse resistance, to date few M. avium EPIs are known. Recently, we showed that in-house 2-phenylquinoline S. aureus NorA EPIs exhibited also a good activity against M. avium efflux pumps. Herein, we report a series of 3-phenylquinolones designed by modifying the isoflavone biochanin A, a natural EPI of the related M. smegmatis, taking into account some important SAR information obtained around the 2-phenylquinoline NorA EPIs. The 3-phenylquinolones inhibited M. avium efflux pumps with derivatives 1e and 1g that displayed the highest synergistic activity against all the strains considered in the study, bringing down (from 4- to 128-fold reduction) the MIC values of macrolides and fluoroquinolones.
Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium
Cannalire, Rolando;Felicetti, Tommaso;Massari, Serena;Manfroni, Giuseppe;Barreca, Maria Letizia;Tabarrini, Oriana;Sabatini, Stefano
;Cecchetti, Violetta
2017
Abstract
Mycobacterium avium is a difficult-to-treat pathogen able to quickly develop drug resistance. Like for other microbial species, overexpression of efflux pumps is one of the main mechanisms in developing multidrug resistance. Although the use of efflux pumps inhibitors (EPIs) represents a promising strategy to reverse resistance, to date few M. avium EPIs are known. Recently, we showed that in-house 2-phenylquinoline S. aureus NorA EPIs exhibited also a good activity against M. avium efflux pumps. Herein, we report a series of 3-phenylquinolones designed by modifying the isoflavone biochanin A, a natural EPI of the related M. smegmatis, taking into account some important SAR information obtained around the 2-phenylquinoline NorA EPIs. The 3-phenylquinolones inhibited M. avium efflux pumps with derivatives 1e and 1g that displayed the highest synergistic activity against all the strains considered in the study, bringing down (from 4- to 128-fold reduction) the MIC values of macrolides and fluoroquinolones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.