: The use of non-conventional brewing yeasts as alternative starters is a very promising approach which received increasing attention from worldwide scientists and brewers. Despite the feasible application of non-conventional yeasts in brewing processes, their regulations and safety assessment by the European Food Safety Authority still represent a bottlenecked hampering their commercial release, at least into EU market. Thus, research on yeast physiology, accurate taxonomic species identification and safety concerns associated with the use of non-conventional yeasts in food chains is needed to develop novel healthier and safer beers. Currently, most of the documented brewing applications catalysed by non-conventional yeasts are associated to ascomycetous yeasts, while little is known about analogous uses of basidiomycetous taxa. Therefore, in order to extend the phenotypic diversity of basidiomycetous brewing yeasts the aim of this investigation is to check the fermentation aptitudes of thirteen Mrakia species in relation to their taxonomic position within the genus Mrakia. The volatile profile, ethanol content and sugar consumption were compared with that produced by a commercial starter for low alcohol beers, namely Saccharomycodes ludwigii WSL 17. The phylogeny of Mrakia genus showed three clusters that clearly exhibited different fermentation aptitudes. Members of M. gelida cluster showed a superior aptitude to produce ethanol, higher alcohols, esters and sugars conversion compared to the members of M. cryoconiti and M. aquatica clusters. Among M. gelida cluster, the strain M. blollopis DBVPG 4974 exhibited a medium flocculation profile, a high tolerance to ethanol and to iso-α-acids, and a considerable production of lactic and acetic acids, and glycerol. In addition, an inverse relationship between fermentative performances and incubation temperature is also displayed by this strain. Possible speculations on the association between the cold adaptation exhibited by M. blollopis DBVPG 4974 and the release of ethanol in the intracellular matrix and in the bordering environment are presented.

Species and temperature-dependent fermentative aptitudes of Mrakia genus for innovative brewing

Turchetti, Benedetta;De Francesco, Giovanni;Mugnai, Gianmarco
;
Sileoni, Valeria;Alfeo, Vincenzo;Buzzini, Pietro;Marconi, Ombretta
2023

Abstract

: The use of non-conventional brewing yeasts as alternative starters is a very promising approach which received increasing attention from worldwide scientists and brewers. Despite the feasible application of non-conventional yeasts in brewing processes, their regulations and safety assessment by the European Food Safety Authority still represent a bottlenecked hampering their commercial release, at least into EU market. Thus, research on yeast physiology, accurate taxonomic species identification and safety concerns associated with the use of non-conventional yeasts in food chains is needed to develop novel healthier and safer beers. Currently, most of the documented brewing applications catalysed by non-conventional yeasts are associated to ascomycetous yeasts, while little is known about analogous uses of basidiomycetous taxa. Therefore, in order to extend the phenotypic diversity of basidiomycetous brewing yeasts the aim of this investigation is to check the fermentation aptitudes of thirteen Mrakia species in relation to their taxonomic position within the genus Mrakia. The volatile profile, ethanol content and sugar consumption were compared with that produced by a commercial starter for low alcohol beers, namely Saccharomycodes ludwigii WSL 17. The phylogeny of Mrakia genus showed three clusters that clearly exhibited different fermentation aptitudes. Members of M. gelida cluster showed a superior aptitude to produce ethanol, higher alcohols, esters and sugars conversion compared to the members of M. cryoconiti and M. aquatica clusters. Among M. gelida cluster, the strain M. blollopis DBVPG 4974 exhibited a medium flocculation profile, a high tolerance to ethanol and to iso-α-acids, and a considerable production of lactic and acetic acids, and glycerol. In addition, an inverse relationship between fermentative performances and incubation temperature is also displayed by this strain. Possible speculations on the association between the cold adaptation exhibited by M. blollopis DBVPG 4974 and the release of ethanol in the intracellular matrix and in the bordering environment are presented.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1553153
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact