A new technology used to reduce the temperature of olive paste was applied to the extra virgin olive oil (EVOO) mechanical extraction process. The performance of a cooling crusher that was able to counteract the thermal increase that occurs during olive fruit grinding was analyzed to evaluate the effects on the development of volatile compounds and the concentration of hydrophilic phenols in the final product. The volatile profiles and phenolic fraction of EVOOs extracted from three different cultivars (Coratina, Peranzana, and Moresca) were positively affected by the use of lower temperatures during the crushing phase. The volatile fractions showed increases in the total aldehydes, mainly related to the concentrations of (E)-2-hexenal, and reductions in the total alcohols, mainly due to 1-penten-3-ol, 1-hexanol and (Z)-3-hexen-1-ol contents. The use of a lower temperature reduced the level of oxidative processes, protecting the phenolic compounds in the Moresca and Peranzana EVOOs by 17.8 and 12.1%, respectively.
The Use of a Cooling Crusher to Reduce the Temperature of Olive Paste and Improve EVOO Quality of Coratina, Peranzana, and Moresca Cultivars: Impact on Phenolic and Volatile Compounds.
Nucciarelli D.;Esposto S.;Veneziani G.
;Daidone L.;Urbani S.;Taticchi A.;Selvaggini R.;Servili M.
2022
Abstract
A new technology used to reduce the temperature of olive paste was applied to the extra virgin olive oil (EVOO) mechanical extraction process. The performance of a cooling crusher that was able to counteract the thermal increase that occurs during olive fruit grinding was analyzed to evaluate the effects on the development of volatile compounds and the concentration of hydrophilic phenols in the final product. The volatile profiles and phenolic fraction of EVOOs extracted from three different cultivars (Coratina, Peranzana, and Moresca) were positively affected by the use of lower temperatures during the crushing phase. The volatile fractions showed increases in the total aldehydes, mainly related to the concentrations of (E)-2-hexenal, and reductions in the total alcohols, mainly due to 1-penten-3-ol, 1-hexanol and (Z)-3-hexen-1-ol contents. The use of a lower temperature reduced the level of oxidative processes, protecting the phenolic compounds in the Moresca and Peranzana EVOOs by 17.8 and 12.1%, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.